This work presents an algorithm to perform autonomous navigation in spacecraft using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF) exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feedforward Neural Network (SLFN) trained via the Extreme Learning Machine to improve the accuracy of the state estimate. The SLFN is trained using GPS data when available and predicts the state correction to be applied to the EKF estimates. The CHAOS-7 magnetic field model is used to generate the magnetometer measurements, while a 13th-order IGRF model is exploited by the EKF. Tests on simulated data showed that the algorithm improved the state estimate provided by the EKF by a factor of 2.4 for a total of 51 days when trained on 5 days of GPS data.

Nanosatellite autonomous navigation via extreme learning machine using magnetometer measurements / Goracci, Gilberto; Curti, Fabio; De Guzman, Mark Anthony De Lunas. - In: AEROSPACE. - ISSN 2226-4310. - 12:2(2025), pp. 1-15. [10.3390/aerospace12020117]

Nanosatellite autonomous navigation via extreme learning machine using magnetometer measurements

Gilberto Goracci
Primo
Conceptualization
;
Fabio Curti
Secondo
Methodology
;
Mark Anthony de Guzman
Ultimo
Validation
2025

Abstract

This work presents an algorithm to perform autonomous navigation in spacecraft using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF) exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feedforward Neural Network (SLFN) trained via the Extreme Learning Machine to improve the accuracy of the state estimate. The SLFN is trained using GPS data when available and predicts the state correction to be applied to the EKF estimates. The CHAOS-7 magnetic field model is used to generate the magnetometer measurements, while a 13th-order IGRF model is exploited by the EKF. Tests on simulated data showed that the algorithm improved the state estimate provided by the EKF by a factor of 2.4 for a total of 51 days when trained on 5 days of GPS data.
2025
space systems; orbit determination; autonomous navigation; nanosatellites; extended Kalman filter; artificial Intelligence; neural networks; extreme learning machine
01 Pubblicazione su rivista::01a Articolo in rivista
Nanosatellite autonomous navigation via extreme learning machine using magnetometer measurements / Goracci, Gilberto; Curti, Fabio; De Guzman, Mark Anthony De Lunas. - In: AEROSPACE. - ISSN 2226-4310. - 12:2(2025), pp. 1-15. [10.3390/aerospace12020117]
File allegati a questo prodotto
File Dimensione Formato  
Goracci_Nanosatellite_2025.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 9.93 MB
Formato Adobe PDF
9.93 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1733251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact